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Collider Searches

Discoveries are not easy at the LHC, don’t always get

 a resonance peak or a sharp kinematic structure

Examples: H➞ WW,  SUSY in missing energy plus jets 



Collider Searches
Higgs searches require combining many kinematic variables to see a slight 

excess over background

Need accurate predictions for signal and background to correctly design 
the nural network 

 



NNLO Differential Cross Sections

Need the following ingredients for a NNLO cross section

 IR singularities cancel in the sum of real and virtual corrections  and mass 
factorisation counterterm but only after phase space integration for real radiations



NNLO Real Corrections and the IR singularities Problem

Various methods exist to deal with IR singularities

• Phase space slicing

• Sector Decomposition:  this talk

• Subtraction based methods:  A. Gehrmann-de Ridder’s talk

 Integration of squared matrix elements over phase space of the final state particles 

includes regions where matrix elements develop soft and collinear singularities

 Need a method to extract the singularities from the real-emission corrections that 

allows for differential observables 

 Yet no method was successfully used to get NNLO cross section for a 2 ➞ 2 process 
until a few weeks ago (Baernrauter, Czakon, Mitov: inclusive ttbar@NNLO in the qqbar channel) 



Sector decomposition: past and present

 Original idea by Binoth, Heinrich; Anastasiou, Melnikov, Petriello

 ‘Entangled singularities’ occur at NNLO; deal with as shown in the example below
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Sector decomposition: past and present

  Several NNLO cross sections successfully calculated using sector decomposition in its 
original version:

• ee ➞	 2 jets    Anastasiou, Melnikov, Petriello

•Fully differential Higgs production cross section         Anastasiou, Melnikov, Petriello

•Fully differential W and Z production cross section           Melnikov, Petriello

•NNLO QED corrections to the electron energy spectrum in muon decay     Anastasiou, Melnikov, Petriello

 Drawback of the original idea:    

no initial partitioning of phase space to separate collinear singularities,  instead attempted 

to find suitable phase space parametrisation for each diagram topology based on its 

denominators



Sector decomposition: past and present

Details of the drawback: Higgs production as an example     Phys.Rev.Lett. 93 (2004) 262002 

Despite its initial success, no 2 ➞ 2 cross sections were calculated for over a decade! 

1

2

3

4

H

2

1 3

4

H

X

• original idea attempted to find a parametrisation that disentangles singularities from 
all the occurring invariants in one topology

• can only have: p1||p3 & p2||p4 or p1||p3||p4.  Not all invariants above can have 
collinear singularities simultaneously

• invariants that occur in this topology : s13, s24, s134, s34.   These contain collinear 
singularities  p1||p3,  p2||p4, p3||p4, p1||p3||p4 



Sector decomposition: past and present

 A successful new framework based on a combination of the sector decomposition 
with the FKS (Frixione, Kunszt, Signer) idea was proposed in arXiv:1005.0274 [hep-ph], M. Czakon

• @ NNLO the elementary building block is the double unresolved phase space where 
two unresolved particles can become collinear to one or two hard directions

• partition the phase space such that in each partition only a subset of particles leads to 
singularities, and only one triple collinear or one double collinear singularity can occur

• the partitioning is done using energies and angles of the unresolved particles w.r.t. 
 the hard  parton(s) emitting them

⌘ ⇠ angles

⇠ ⇠ energies



The new Sector decomposition

 Main difference w.r.t. other schemes dealing with double real radiation: 

• subtraction terms constructed from known soft and collinear limits of 

tree and one-loop scattering amplitudes  (Catani, Campbell, Glover, Grazzini, Kosower, Uwer, ...)

• no analytic integration is required for the subtraction terms



The new Sector decomposition

 Main difference w.r.t. other schemes dealing with double real radiation: 

• subtraction terms constructed from known soft and collinear limits of 

tree and one-loop scattering amplitudes  (Catani, Campbell, Glover, Grazzini, Kosower, Uwer, ...)

• no analytic integration is required for the subtraction terms

 Idea of arXiv:1005.0274 [hep-ph], M. Czakon   in a  nutshell:
pre-partitioning of the phase space leads to a phase-space parameterization 
applicable to NNLO real-radiation corrections for any process, regardless of 
multiplicity



The new Sector decomposition

 Main difference w.r.t. other schemes dealing with double real radiation: 

• subtraction terms constructed from known soft and collinear limits of 

tree and one-loop scattering amplitudes  (Catani, Campbell, Glover, Grazzini, Kosower, Uwer, ...)

• no analytic integration is required for the subtraction terms

 Idea of arXiv:1005.0274 [hep-ph], M. Czakon   in a  nutshell:
pre-partitioning of the phase space leads to a phase-space parameterization 
applicable to NNLO real-radiation corrections for any process, regardless of 
multiplicity

Our work in arXiv:1111.7041 [hep-ph] (R. B., Melnikov, Petriello):   

• show explicitly how this framework allows the extraction of singularities by 

applying it to a simple example: NNLO QED corrections to differential Z ➞ e+e-

• a new phase-space parameterization suitable for the double-collinear partition 

of  1	 ➞	 2 decays

• discuss the details of computing the real-virtual corrections with this method



Z ➞ e+e-γγ  with the new sector decomposition

• The starting point is the partitioning:

• We study the process

has only  p1 || p2 || p_   and p1, p2  soft. Don’t care 
how ugly s1+  and s2+  are

has only  p1 || p+  & p2 || p_   and p1, p2  soft. Don’t 
care how ugly s1-  and s2+  are

s�1 = 2E� Mz ⇠1 ⌘1

s�2 = 2E� Mz ⇠2 ⌘2

s12 = M

2
z ⇠1 ⇠2

(⌘1 � ⌘2)2

N1(x3, x4, x5)

• Using the energies and angles of the electron and photons we get the following invariants

s�12 = 2Mz (E� ⇠1 ⌘1 + E� ⇠2 ⌘2 +
Mz

2
⇠1 ⇠2 (⌘1 � ⌘2)

2
/N̄1(x3, x4, x5))

The dangerous invariant is when both photons are emitted from p_

•  The entangled singularities as xi1, xi2, eta1, eta2 vanish lead to the tree, and to the variable 

changes in each sector



Triple collinear partition

• Sector decomposition tells us to do the following variable changes to disentangle 
 singularities in the triple collinear partition         :���

12

𝞳  is  related to the azimuthal angle between the two photons

• Take sector S1-- as an example.  Energies and angles take a simple form in terms of xi 

���
12



Sector S1-- of the  triple collinear partition

• we have reduced our calculation to needing the following objects:

regular functions of xi

with

and

lets look at some of the singularities that can occur 

expandable in plus distributions

���
12



• what happens if x1 = 0 ? E1 = E2 = 0 double soft limit

the QED eikonal current factorises completely

with

derive the following formula

easy to calculate numerically

���
12Sector S1-- of the  triple collinear partition



• what happens if x2 = 0 & x3 =0 ? E2  = 0 &  p1 || p_ soft-collinear limit

the QED eikonal current factorises in two steps:

derive the following formula

easy to calculate numerically

collinear factorisation of  ϒ1

soft factorisation of ϒ2

���
12Sector S1-- of the  triple collinear partition



Double collinear partition

• New feature w.r.t. triple collinear partition: all final state particles participate in 
the singular structure. Difficult to find a parametrisation that makes all collinear 
singularities nice

• Our approach to tackle this problem was to use an iterated Catani-Seymour 
parametrisation:

First step:  treat photon ϒ1  as emitted, the electron as emitter and the positron as spectator.  
The 3  ➞  2 momentum mapping was derived by Catani & Seymour (1997) and is determined 
by momentum conservation:   

Second step:  apply a similar mapping to the reduced momenta of the reduced reaction

treat photon ϒ2  as emitted,       as emitter and        as spectator.  New momenta satisfy 
momentum conservation:   

ẽ+ ẽ1�

��+
12

• Now follow same steps as before: write down the invariants in the squared matrix 
element and derive the needed variable changes that disentangle the singularities.  
Four sectors are found in this case.



Sector S4-+ of the double collinear partition ��+
12

•  Need to perform the following integration numerically over all regions of phase space:

with

and

R
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Sector S4-+ of the double collinear partition ��+
12

finite functions

• what happens if x1 = 0 & x3 =0 ? E1  = E2 = 0 double soft limit

the QED eikonal current factorises completely and we get

• other limits, collinear or soft-collinear, are studied in a similar way



The real-virtual corrections
• Partitioning is simple, photon collinear either to the electron or positron

• A subtlety occurs here: in contrast to tree-level amplitudes, one-loop amplitudes
are not rational functions of energies and angles

2Re
⇣
M(1)

Z!e+e��M
(0)⇤
Z!e+e��

⌘
⇠ F1 + F2 (se1)�"

• Soft limit:

In QED, no fractional power, therefore no F2 term

F1(0, ⌘1) =
4 e2

m2
Z

⇣
M(1)

Z!e+e�M
(0)⇤
Z!e+e�

⌘



The real-virtual corrections
• Collinear limit:

• Factorisation happens in terms of splitting amplitudes

• Splitting amplitudes are defined through standard matrix elements and were computed 
by Kosower & Uwer (1999).  Need to rewrite them in terms of  splitting functions 



• From form of splitting amplitudes, can separate into F1 and F2 term 

The real-virtual corrections

Easily computed numerically



Numerics

• Result for  Z-decay

with

The results for the real-virtual and double real corrections based on the soft 
and collinear limits of the relevant matrix elements, as well as the known 
virtual-virtual correction which we have cross-checked:

in full agreement with an analytic computation based on the optical theorem
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Extension to higher multiplicities

• Method and parametrisation can be extended without difficulty 
to higher-multiplicity final states.  Consider the real-real correction 
Z→e+(p+) e-(p-)γ(p1)γ(p2)γ(p3). Partition the phase space, consider 
a triple-collinear partition with p3 hard, p1||p2||p+:

• For the phase space, decompose as:

• Can recycle the same parameterization as for Z→e+e-γγ; 

p3 doesn’t participate in singularity structure, its form can be 

arbitrarily complicated



Summary

• Described in detail a subtraction scheme that enables the calculation of fully differential 

cross sections at NNLO

• The method combines sector decomposition with known soft and collinear limits of tree 

and one-loop scattering amplitudes to get the subtraction terms.  No analytic integration is 

required for them

• Can recycle the same parameterization for lower multiplicity jet observables to get 

 higher multiplicity ones

• Presented differential Z ➞ e+e-  as a simple example to describe the method.  Applications 

of these ideas to more phenomenologically interesting QCD processes  is ongoing. 


